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Abstract. The optical absorption in ferromagnetic metal La1−xSrxMnO3 is anomalous; it has a wide-range
absorption up to about 1 eV even at zero temperature. Since 3d electrons in La1−xSrxMnO3 partially fill
doubly degenerate eg orbitals, the orbital degrees of freedom are crucial to understand this metallic system.
We argue that the interband transition within eg orbitals is important in the optical absorption. The optical
spectrum is modified also by the inter-orbital Coulomb interaction. We have examined perturbatively the
effect of the Coulomb interaction on the spectrum. Available experiments are discussed by comparing with
the present results.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 71.30.+h Metal insulator
transitions and other electronic transitions – 78.20.-e Optical properties of bulk materials and thin films

1 Introduction

La1−xSrxMnO3 are typical transition-metal oxides with
the perovskite-type structure ABO3 in which a system-
atic replacement of trivalent element A and transition el-
ement B in ABO3 provides us with a variety of insulating
and metallic phases [1–3]. The end member LaMnO3 is
an insulator, in which the so-called A-type antiferromag-
netic order (i.e., antiferromagnetically stacked ferromag-
netic layers) is realized. It is believed that the eg orbitals
are also ordered to assist in stabilizing this magnetic order.
As Sr is doped into LaMnO3, the system becomes metallic
and ferromagnetic beyond x ∼ 0.17. No orbital order has
been observed in the ferromagnetic metallic phase, sug-
gesting that the orbital degrees of freedom are quenched.

A recent optical conductivity in La1−xSrxMnO3 (x =
0.175 and 0.3) [4] shows that excitations are present in a
wide energy region from ∼ 0.02 eV to ∼ 1 eV. This is of-
ten called “incoherent absorption”, the origin of which has
been a matter of controversy. The main issue is the na-
ture of orbital degrees of freedom in ferromagnetic metal-
lic phase. The intensity of the “incoherent part” increases
with the decrease of temperature, being finite at zero tem-
perature. This has led some researchers to suggest that
an orbital-charge separated non-Fermi liquid, which is en-
tirely different from the Fermi liquid, is realized in this
three-dimensional system [5]. In contrast to this view the
present authors have proposed in a previous paper [6] that
the excitations detected in optical conductivity must be
related to interband transitions within eg orbitals and that
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the orbital dependence of transfer integrals, whose impor-
tance in the perovskite-type transition metal oxides has
been noted before in a different context [7], makes the
transitions allowed. The purpose of this paper is to study
this problem in more detail, i.e., in particular, the effect
of Coulomb interaction on the optical absorption, which is
important in transition-metal oxides and to show that the
anomalous “incoherent absorption” can be understood, at
least qualitatively, within the standard Fermi liquid ap-
proach applied to the orbitally degenerate bands.

This paper is arranged as follows. In Section 2 our
model is described and the magnitude of the parameters
are estimated. The constraints from available experiments
are critically discussed. The effect of Coulomb interaction
on the optical absorption is presented in Section 3. Fi-
nally a comparison is made with experimental results and
related theoretical problems are also discussed.

2 Model and magnitude of parameters

In this paper the simplest tight-binding model is used
for the electrons in Mn eg orbitals of La1−xSrxMnO3.
The 2p orbitals of oxygen are not taken into account
explicitly; therefore the optical spectrum we present is
valid only below the charge-transfer energy. The eg or-
bitals are Hund-coupled with localized electrons in t2g or-
bitals. It is believed that the double exchange mechanism
stabilizes the ferromagnetism in metallic La1−xSrxMnO3

[8–11]. We keep electrons with up spin only in eg orbitals
which are doubly degenerate, since our discussion is fo-
cussed on the low-temperature limit of the ferromagnetic
state. (The temperature dependence has been discussed
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in [12].) Then we have the following model:

H = H0 +H1 (2.1)

H0 =
∑
ijαβ

tαβij c
†
iαcjβ (2.2)

H1 = Ũ
∑
j

nj1nj2, (2.3)

where α and β stand for one of the two eg orbitals; α = 1
and 2 represent 3z2−r2 and x2−y2 orbitals, respectively.
cjα is the annihilation operator of Mn 3d electron on the

α orbital of site j. Ũ(= U ′−V ) is an effective Coulomb in-
teraction in which U ′ is the Coulomb interaction between
two electrons on 3z2−r2 and x2−y2 orbitals and V is the
Hund coupling within the eg orbitals [7]. The model (2.1)
is similar to the Hubbard model; an important difference

is, however, the orbital dependence of transfer integral tαβij
which comes from the wavefunction of 3z2−r2 and x2−y2

orbitals relative to the vector Rij connecting two neigh-
boring Mn ions [7]. This point becomes crucial later. The
crystal structure of La1−xSrxMnO3 for x = 0.17 ∼ 0.3
is rhombohedral, but we assume the cubic symmetry for
simplicity since the lattice is close to cubic.

The hopping term in (2.2) takes the following form:

H0 =
∑
kαβ

εαβ(k)c†kαckβ , (2.4)

where εαβ is the Fourier transform of tαβij . ckα is the an-
nihilation operator of electron with wave vector k and
orbital α. Using the eg wave functions, one obtains from

tαβij

εαβ(k) = ε0(k)δαβ + ε1(k)(τz)αβ + ε2(k)(τx)αβ , (2.5)

where τz and τx are Pauli matrices. ε0(k), ε1(k) and ε2(k)
are given by

ε0(k) = t(cos kx + cos ky + cos kz), (2.6)

ε1(k) =
t

2
(cos kx + cos ky − 2 coskz), (2.7)

ε2(k) = −

√
3t

2
(cos kx − cos ky). (2.8)

Here and henceforth we take a = ~ = 1, where a is the
lattice constant. The off-diagonal matrix element ε2(k)
originates from nonzero electron hopping between 3z2−r2

on a Mn ion and x2 − y2 on a neighboring Mn ion in the
x-y plane. The eigenvalues of the 2× 2 matrix εαβ , which
are eg bands in the tight-binding approximation, are as
follows:

E±(k) = ε0(k)±
√
ε2

1(k) + ε2
2(k). (2.9)

E±(k) has the cubic symmetry, as expected.
The model (2.1) has just one dimensionless parame-

ter Ũ/t. By comparing (2.9) with the eg-band width in
band-structure calculations [13] the value of t suitable for

La1−xSrxMnO3 is estimated as t = 0.3 ∼ 0.4 eV; the
total band width 6t is 2 ∼ 2.5 eV. On the other hand Ũ
is probably 2 ∼ 2.5 eV. This value is smaller than 3 eV
used previously [17]; however, because of admixture of the

eg wave functions with oxygen 2p orbitals, one expects Ũ
to be reduced to some extent. Summing up, we obtain

Ũ

6t
= 0.8 ∼ 1.3. (2.10)

This means the metallic La1−xSrxMnO3 (x ∼ 0.3) should
be regarded as an intermediate coupling system. This esti-
mation is supported also from the following experimental
facts:
(1) No orbital order is observed in the ferromagnetic

metallic phase. In fact if the strong coupling (Ũ/6t� 1)
were appropriate as claimed by Ishihara et al. [5], one
should expect an orbital order of some sort in the present
cubic system.
(2) The γ value of the specific heat is as modest as γ = 3 ∼
4 mJ/K2mole [14,15]. This magnitude can be naturally
interpreted within the band-structure calculation [14].
(3) From the Hall coefficient the carrier concentration is
estimated as n ∼ 1 hole/Mn-site [16], suggesting a “large
Fermi surface”. On the other hand, the orbital-charge sep-
arated non-Fermi liquid [5] predicts a “small Fermi sur-
face”, which contradicts with the observed Hall coefficient.

3 Doubly degenerate eg bands and optical
absorption

The frequency-dependent conductivity σµµ(ω + iδ)
(δ → +0) can be most conveniently calculated from the
Kubo formula

σµµ(ω + iδ) =
−i

ω + iδ

[
Kµµ(ω + iδ)−Kµµ(0)

]
, (3.1)

where Kµµ(ω + iδ) is obtained from the thermal Green
function

Kµµ(iωm) =

∫ β

0

dτeiωmτ 〈T [Jµ(τ)Jµ(0)]〉 (3.2)

via analytic continuation Kµµ(iωm) → Kµµ(ω + iδ). ωm
is the Matsubara frequency, ωm = 2mπkBT (m: integer).

The current operator along the µ direction, Jµ =

(−e)Ṙµ, is given by

Jµ =
∑
kαβ

jαβµ (k)c†kαckβ , (3.3)

where jαβµ (k) = (−e)∂εαβ(k)/∂kµ. The same result is also

obtained by introducing the Peierls phase factor to tαβij as

tαβij exp(i(−e)A · (ri− rj)/c) and expanding it in terms of

the vector potential A. From (2.5) jαβµ (k) has the follow-
ing form:

jαβµ (k) = jµ0(k)δαβ + jµ1(k)(τz)αβ + jµ2(k)(τx)αβ .

(3.4)
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The expression for jµ0, jµ1 and jµ2 is evident from
jαβµ (k) = (−e)∂εαβ(k)/∂kµ. Note that the 2 × 2 matri-

ces εαβ(k) and jαβµ (k) do not commute with each other,
unless jµ1ε2 − jµ2ε1 = 0 holds.

Let us start from the noninteracting case [6], in which
Kµµ(iωm) in (3.2) is simply given by

Kµµ(iωm) = −
1

β

∑
n

∑
αβα′β′

jαβµ (k)jβ
′α′

µ (k)

×Gββ
′

k (iωm + iεn)Gα
′α
k (iεn), (3.5)

where Gαβk (iε) is the Fourier transform of the one-particle
Green function

Gαβk (τ) = −〈T [ckα(τ)c†kβ(0)]〉. (3.6)

From this relation, Gαβk (iε) is obtained as

Gαβk (iε) =
Aαβ+ (k)

iε−E+(k)
+

Aαβ− (k)

iε−E−(k)
, (3.7)

where the spectral weights for the two bands are given by

Aαβ+ (k) =
1

2

(
δαβ +

ε1(k)(τz)αβ + ε2(k)(τx)αβ√
ε2

1 + ε2
2

)
, (3.8)

Aαβ− (k) =
1

2

(
δαβ −

ε1(k)(τz)αβ + ε2(k)(τx)αβ√
ε2

1 + ε2
2

)
. (3.9)

After substituting this expression into (3.5), the real
part of the conductivity is easily obtained as

< σµµ(ω + iδ) = < σintrabandµµ (ω + iδ)

+ < σinterbandµµ (ω + iδ), (3.10)

< σintrabandµµ (ω + iδ) =

∫ ∞
−∞

dε
f(ε)− f(ε+ ω)

ω

×
∑
k

[(
j0 +

j1ε1 + j2ε2√
ε2

1 + ε2
2

)2

D̃
(+)
k (ε)D̃

(+)
k (ε+ ω)

+
(
j0 −

j1ε1 + j2ε2√
ε2

1 + ε2
2

)2

D̃
(−)
k (ε)D̃

(−)
k (ε+ ω)

]
(3.11)

< σinterbandµµ (ω + iδ) =∫ ∞
−∞

dε
f(ε)− f(ε+ ω)

ω

∑
k

(j1ε2 − j2ε1√
ε2

1 + ε2
2

)2

×
[
D̃

(−)
k (ε)D̃

(+)
k (ε+ ω) + D̃

(+)
k (ε)D̃

(−)
k (ε+ ω)

]
(3.12)

where σintraband and σinterband are intraband and inter-
band contributions, respectively. D̃

(±)
k (ε) is defined by

D̃
(±)
k (ε) = −

1

π
=
( 1

ε+ iδ −E±(k)

)
. (3.13)

Because of the cubic symmetry σµµ(ω + iδ) for µ = x, y
and z are identical.

For the noninteracting case, after integrating over ε in
(3.11), the intraband part has the following form

< σintrabandµµ (ω + iδ) = ADrudeδ(ω), (3.14)

where the Drude weight ADrude is given by

ADrude = (et)2π
∑
k

sin2 kz

[(
1− ε1/

√
ε2

1 + ε2
2

)2

×
{
− f ′(E+(k))

}
+
(

1 + ε1/

√
ε2

1 + ε2
2

)2

×
{
− f ′(E−(k))

}]
. (3.15)

ε1 and ε2 are defined in (2.7) and (2.8), respectively.
E±(k) are two eg bands in (2.9). The Drude weight is
a sum of contributions from two bands with different
weights, as expected. For T = 0 this result for the Drude
weight can be obtained also from Kohn’s formula by in-
troducing the vector potential with the Peierls phase fac-
tor [18].

The interband contribution for the noninteracting case
is obtained from (3.12) by integration over ε:

< σinterbandµµ (ω + iδ)

=
4π

ω

∑
k

(jµ1ε2 − jµ2ε1)2 f(E−(k))− f(E+(k))

(E+(k)−E−(k))2

× δ(ω −E+(k) +E−(k)) (3.16)

= e2t4
π

ω3

∑
k

[
sin2 kz(cos kx − cos ky)2

+ sin2 kx(cos ky − cos kz)
2 + sin2 ky(cos kz − cos kx)2

]
×
[
f(E−(k))− f(E+(k))

]
δ(ω −E+(k) +E−(k)).

(3.17)

Clearly the nonvanishing of the interband contribution is
due to jµ1ε2 − jµ2ε1 6= 0. Therefore, if the transfer inte-

gral has no off-diagonal component (i.e. tαβij ∝ δαβ), the
interband contribution vanishes. Actually the importance
of the off-diagonal component is recognized in connection
with the magnetic structure realized in the insulating case
[7,17]. In Figure 1 the intraband and interband processes
are shown together with the tight-binding energy bands.
Notice the interband transition starts from zero energy
because of the degeneracy of the two bands along the Γ -R
line.

The integrated intensities for the Drude part and the
interband transtion are defined by

IDrude =

∫ ∞
0

dω<σDrudeµµ (ω + iδ) =
1

2
ADrude,

(3.18)

Iinterband =

∫ ∞
0

dω<σinterbandµµ (ω + iδ). (3.19)
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Fig. 1. The intraband (A) and interband (B) processes within
the eg bands. The broken line represents the Fermi energy. The
inset shows the Brillouin zone and the symmetry points of the
simple cubic lattice.

The ratio IDrude/Iinterband for the noninteracting case is
∼ 1.2 for the hole concentration x = 0.3 and insensitive
to x in 0.175 < x < 0.3.

Now we turn to the interaction effects on σµµ(ω+ iδ).
As mentioned in Section 2, there are several reasons to
believe that the effective Coulomb interaction Ũ is not ex-
tremely large in metallic La1−xSrxMnO3 (Ũ/6t = 0.8 ∼
1.3) so that the perturbational treatment can capture the
essential point. This is equivalent to say that the Fermi
liquid approach is valid for the present case. Led by this
reasoning, the simplest second-order perturbation in Ũ is
used for the self-energy part Σ(ε+ iδ) ignoring the k de-
pendence. This means that only the local correlation effect
is taken into account in the same spirit as the dynami-
cal mean-field theory [19]. Then one can easily show that
the self-energy part is diagonal and independent of the
orbitals. Within this local approximation the vertex cor-
rection due to Ũ is absent. Thus the correlation effect is
included into (3.10)∼(3.12) by replacing (3.13) with

D̃
(±)
k (ε) = −

1

π
=
( 1

ε−Σ(ε+ iδ)−E±(k)

)
· (3.20)

Σ(0) giving a shift of the chemical potential is taken into
account in µ; therefore Σ(ε+ iδ)−Σ(0) is used actually
for Σ(ε+ iδ).

The intraband and interband conductivities calculated
in this way are presented in Figures 2a and 2b, respec-
tively. First, the Coulomb interaction produces incoherent
absorption in the intraband part at the expense of the re-
duction of the Drude weight. It is easy to show from (3.11)
that the Drude weight ADrude is given by

ADrude

A
(0)
Drude

=
1

1− ∂Σ(ε+iδ)
∂ε

∣∣∣
ε→0

, (3.21)

where A
(0)
Drude is the Drude weight for Ũ = 0, i.e., (3.15).

Second, the interband conductivity is modified by Ũ in
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Fig. 2. The intraband (a) and interband (b) absorption for
various values of Ũ/t. The chemical potential is assumed as
µ/t = −1.0, which corresponds to x ∼ 0.3.

0

0.05

0.1

0 1 2 3 4 5 6

R
eσ

to
ta

l (ω
) /e

2

U / t = 0
1
2
3

~

ω / t

Fig. 3. The total optical conductivity for various Ũ/t. The
chemical potential is the same as in Figure 2.

such a way that the peak position is shifted to lower fre-
quency as Ũ increases and that Ũ causes the high-energy
tail due to inelastic scattering.

The total conductivity is shown in Figure 3. As far as
the finite-energy region is concerned, the interband con-
tribution is clearly dominant within the magnitude of Ũ
shown here. As mentioned in Section 2, the Ũ value real-
istic for La1−xSrxMnO3 is estimated as Ũ/t = 4.8 ∼ 7.8.

Since the simplest second-order perturbation in Ũ is used,
we took modest values (Ũ/t ≤ 3) within the applicability
limit. However, the tendency in the interaction effect on
the optical absorption is evident at this stage.
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4 Discussion and conclusion

Let us compare our results with available experiments.
Looking at the experimental spectrum in [4], we notice
that the broad “incoherent absorption” from 0.02 eV to
1 eV which is observed in the fully spin-polarized state
at T = 0 K is qualitatively well reproduced in our result,
i.e., Figure 3. The frequency dependence of < σµµ(ω+ iδ)
shows that the peak due to the interband absorption shifts
to lower frequency as Ũ increases. The spectrum for larger
Ũ shows a better agreement with the experimental spec-
trum. Therefore we conclude that the electron correlation
is important. According to our result the broad “incoher-
ent absorption” is due to the interband absorption within
the eg bands which is modified by the electron correla-
tion. The frequency region is consistent with the interband
absorption, while the frequency dependence requires the
electron correlation. To achieve quantitative agreement
with experiments the theory has to be improved by go-
ing beyond the simplest second-order perturbation and
the local approximation. It is left for a future study.

Our study is essentially a Fermi-liquid approach start-
ing from the weak-coupling side. According to widely
accepted wisdom the Fermi statistics usually dominates
low-energy physics in three-dimensional itinerant sys-
tems. We believe most experimental results on metallic
La1−xSrxMnO3 are consistent with this view. In our treat-
ment a possible coupling with lattice distortions is not
included. The reason is, first, there is no experimental ev-
idence suggesting a strong electron-lattice coupling in the
metallic phase, which is nearly cubic. This is in contrast
to the insulating phase where the Jahn-Teller distortion
is actually observed. Second, we are interested in the fre-
quency region up to 1 eV, which is so high that the lattice
displacement cannot follow the oscillating electric polar-
ization.

Finally, let us consider what happens if one starts from
the strong-coupling limit (Ũ/t→∞) as Ishihara et al. did
[5]. First, if such a limit is appropriate, the ground state
should have an orbital long-range order of some sort in
three-dimensional systems like La1−xSrxMnO3 (x ∼ 0.3),
where no orbital order is observed experimentally. This
means that any state without orbital order is higher in
energy for Ũ/t→∞. Thus, if one develops a theory from a
state without orbital order, the starting point is inevitably
unstable. Second, under the local constraint due to Ũ/t→
∞, Ishihara et al. express ciα as

ciα = h†i biα (4.1)

where hi is “orbital-less” fermion (holon) and biα is

a boson for orbital. Here the local constraint h†ihi +∑
α b
†
iαbiα = 1 should be satified for any site i. Let us

recall that one can equally well assume that hi is a bo-
son (holon) and biα is a fermion. If the local constraint
is exactly taken into account, both representations give
identical results. However, if the local constraint is re-
placed by a “grobal’ one (i.e., so-called “mean-field” treat-
ment), the results depend on which statistics one chooses.
This is clearly unphysical. For these two reasons we think
the weak coupling approach is more suitable than the
strong-coupling approach, as far as the metallic phase of
La1−xSrxMnO3 is concerned.

We thank Y. Tokura for showing us his group’s data prior
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for Scientific Research from the Ministry of Education, Science
and Culture.
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